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WAVE D R A G  OF B O D I E S  OF R E V O L U T I O N  

IN U N S T E A D Y  T R A N S O N I C  F L O W  

M. A.  N a i d a  a n d  A.  S. F o n a r e v  UDC 533.6.011 

Determination of the wave drag of bodies is a difficult problem of aerodynamics in the transonic 
velocity range, because the conventional method of integration of the pressure distribution over the body in 
numerical solution of the problem using the theory of small perturbations is rather inaccurate and often even 
leads to negative values of the drag coefficient [1, 2]. Cole et al. [1, 2] proposed another approach to drag 
calculation, which is based on the integral form of the equation of momenta, and considered steady transonic 
flow around thin airfoils. The method is easily extended to the case of flow past wings, but cannot be applied 
directly to axisymmetric bodies, because of singularities due to the axial structure of the flow and also because 
of the absence of a linear relationship between the pressure and velocity components within the framework 
of the theory of small perturbations. The problem of applying the integral theorem of momenta to steady 
axisymmetric transonic flow around bodies was considered in [3]. The same approach was used in [4, 5] to 
determine the unsteady wave drag of bodies in plane transonic flow and to obtain the time dependence of the 
aerodynamic characteristics of an airfoil during its interaction with a gust, with a moving shock wave, etc. 

This paper extends these results to the case of unsteady transonic flow around.axisymmetric bodies. 
We solve the problem under the assumptions of the nonlinear transonic theory of small perturbations and 
investigate the unsteady "high-frequency" equation for the velocity potential. This equation makes it possible 
to consider aperiodic (in particular, jumpwise) variations of the flow parameters: sudden gusts, incoming shock 
waves, etc. 

A formula for determination of the unsteady wave drag of bodies of revolution is obtained using the 
integral form of the equation of momenta. Singularities associated with the axial structure of the flow are 
taken into account. 

A numerical algorithm, which is an extension of the alternating-direction method to the axisymmetric 
case, is used together with the Engquist-Osher monotone scheme to calculate unsteady transonic flow past 
bodies of revolution of various shapes. 

1. S t a t e m e n t  of  t h e  P r o b l e m .  Let a slender body of revolution be in given steady transonic flow 
of an ideal gas with velocity Uoo. At some initial moment, an unsteady perturbation occurs in the flow, for 
example, in the form of a horizontal gust, which instantly envelopes the body, or in the form of a weak shock 
wave whose front is located at some distance from the body. The unsteady flow around the body and the 
change in its integral aerodynamic characteristics in the transition regime must be investigated. 

Since the free-stream Mach number Moo is close to unity, and the thicknesses of the bodies, the gust 
velocities, and tl~e shock-wave intensities are small in comparison with the characteristic values of the same 
quantities of the problem, we can use the transonic theory of small perturbations. 

Within the framework of this theory, the problem is described by the nonlinear unsteady equation for 
the potential ~ of the disturbed velocity [6, 7]: 

2 2 2 i Moo~u + Moo~t  = ((C1 + C2qo~)~x)~ + - (r~r)'r. (1.1) 
r 

Here C1 = 1 - Moo;2 C2 = -(~' + 1)M2/2; and "y is the adiabatic exponent. We locate the origin of the 
longitudinal axis of a cylindrical coordinate system at the center of the body; the x axis coincides with the 
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symmetry axis of the body and has the same direction as the velocity vector of the unperturbed free stream. 
The r axis is perpendicular to the x axis and forms with it a right-hand system of coordinates. All quantities 
in (1.1) are referred to their characteristic values with the subscript 0: 

xo = ro = l, uo = Uoo, to = x o / u o ,  qao = uoxo 

(l is the body length). It should be noted that, in contrast to the case of plane symmetry, Eq. (1.1) has a 
singularity on the line of axial symmetry for r = O. Because of this, the condition of zero normal velocity 
cannot be applied at the axis r = 0 in the case of axial symmetry. In this connection, we consider an equation 
which is obtained from (1.1) as r ~ O: 

(~) '~  = 0 (1.2) 

and its solution qo = f (x, t )In r + g (x, t) with the as yet unknown functions f and g. Let R = R (x) be the 
shape of the streamlined body of revolution, which does not change with time. The condition of zero normal 
velocity is satisfied for r = R: f(x'O[ = ~ x  

v = ~ r  - -  ~ r = R  

(,~ is the vertical velocity component). Thus, f ( ~ ,  t) = R G  = S'-/2~ [S (~) i s  the cross-sectional area of the 
streamlined body], and the solution of Eq. (1.2) is written as 

5 ~o= lnr+g(z,t). (1.3) 

It is seen that for r --* 0 solution (1.3) has a logarithmic singularity. Therefore, the boundary condition, as in 
the steMy case [8], is given not on the axis r = 0 but on the surface of an imaginary cylinder with a fairly 
small radius r ,  in the form 

~ = s ; / (2~r )  for r = ~.. (1.4) 

Since the problem is solved numerically in a large but finite domain, one should eliminate the possible 
influence of the outer boundaries on the flow field, which consists in reflecting the perturbations that reach 
the boundaries back into the flow. This is achieved by using special no~.reflecting boundary .conditions. For 
the "low-frequency" equation, such conditions were obtained in [9] by analyzing the asymptotic behavior of 
a relation that holds on the characteristic surface. 

Let us consider the characteristic equation for (1.1): 

2 2 Moo~ t + 2 M ~ x ~ t  = C~ 2 + ~2 (C = IC1 + 2C2qoxl). 

The general integral of this equation, which determines the characteristic surface (1.1), can be written as 

V/Zc x/~t Mooz 
= + r2 - M~o~/C + M 2 - v ~ , / r C  M~ + 

We seek a relation on the characteristic surface in the form of a linear combination of the first derivatives of 
the potential. Assuming that  qo = qo (~), we obtain c~qoz + flqor + crqot = qof ( c ~  + f l ~  + a~t )  = 0, provided that 

2 X 
c~ = - C [ ,  + Moo~t = ~ ,  

/ ~  q- r 2 

MLx 
= ML (6  + r - 

C ~ + r  2 

Thus, the relation on the characteristic surface has the form 

z r {'Mooz ;M2~_+ C )  
--~o, - -d~or + Moo \ C d  - -  ~ t  = O, 

r 

fl = =~r = ~ + r 2 

Moo~C. +M~ 
C 
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The asymptotics of this expression in the limits x ~ -00 ,  x ---* 00, and r ~ oo gives the boundary conditions 
at the left, right, and upper boundaries, respectively: 

Cqvx - Moo (Moo - ~/C + M2)  ~t = 0 at 

C~=-Moo(Moo+~/C+M~)q~t=O at 

Moo~r + ~/C + M 2 v/-Cqoz = 0 at 

z ~ - ~ ;  (1.5) 

x --+ oo; (1.6) 

r ~ r ' (1.7) 

Equation (1.1), together with boundary conditions (1.4)-(1.7), completely describes the problem of the 
unsteady interaction of a body with perturbations of various types in transonic flow. In the modeling of 
a body's entrance into a horizontal gust (instant enveloping), first a stationary solution with some fixed Mach 
number is found, and then the Mach number is changed instantaneously (in one time step) by a finite value. 
In solving the problem on interaction of the body with a shock wave, the latter is modeled by specifying a 
linear distribution of the potential at a sufficiently long distance from the body, where the flow is practically 
unperturbed. The weak shock wave given in this way at the initial moment t = 0, begins to propagate in 
accordance with the laws of gas dynamics in the flow field perturbed by the body for t > 0. 

2. D e t e r m i n a t i o n  of  Wave  Drag .  The wave drag of an axisymmetric body will be calculated both 
by the usual method of integrating the pressure distribution over the body surface and by using the integral 
theorem of momenta. Within the framework of the transonic theory of small perturbations, the pressure 
coefficient in the axisymmetric case is found from the formula % = - 2 u  - v 2 - 2qat. 

Thus, it is necessary to know the perturbed velocity components u and v and the derivative of the 
potential with respect to time ~ot to determine the pressure coefficient on the body. The vertical velocity 
component v on the body is found from the condition of zero normal velocity. Let us use solution (1.3), which 
describes the potential distribution inside an imaginary cylinder of small radius r , ,  to determine the horizontal 
velocity component and the derivative of the potential with respect to time. We assume that the initial 
boundary-value problem in the external domain, which is determined by Eq. (1.1) with the corresponding 
initial and boundary conditions (1.1)-(1.7), has already been Solved, and, hence, the distribution of the 
disturbed velocity potential at the surface of the cylinder for 7" = r,  for each moment is already known. 
Combining the solution in the internal domain 

'S~ 
u = ~ = lnr  +g= 

2r  

with the solution for the external domain for 7" = r. ,  we have 

u , = ~  r.+g~, g~=u, ~ l n  ,. 

Thus, the horizontal velocity component on the surface of the body is given by the expression 

r R ~ZZ u(z,R,t) = u , + - ~ - r  In - - .  
T, 

Similarly, differentiating (1.3) with respect to time, we obtain qat = #t (x, t), from which it follows that the 
value of ~pt inside the cylinder does not depend on the transverse coordinate r, and, consequently, its value 
on the surface of the body coincides with its value on the surface of the cylinder for r = r , ,  i.e., in accordance 
with the above assumption q0t is known. The final expression for % (,n the surface of the body has the form 

c p = - 2  u, + -~- ln  ~, 

The wave drag coefficient cz is found using (2.1) as follows: 

0, 0, ) 7 
I n - - + ( / ~ , )  2 Rt(zdx-4r (~,),Rt:~,dx. (2.2) 

7", 
--0.5 - 0 . 5  -0 .5  --0.5 
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It is seen that the expression for cx consists of three terms. The second term is determined by the shape of 
the body and can be integrated: 

o.1( I ) _ 2~ : in _n + (,%)2 R&d= (S')2 In - 

r ,  2~r r ,  I-0.s" 
--0.5 

It should be expected (in accordance with the asymptotic theory of [1]) that the contribution of the third term 
to cz is insignificant in comparison with the contribution of the first term. Therefore, the method of calculation 
of the first term has the main influence on the accuracy of determination of c=. As was noted, calculation of 
the first term in (2.2) by numerical integration over the surface of the body can lead to substantial errors, 
even to a negative value of the wave drag [2, 3]. In order to avoid this, we use the integral theorem of momenta 
and express the first term as the sum of several quadratures, which can be determined numerically without 
the shortcoming mentioned above. For this, we consider a system of two equations. The first of these is Eq. 
(1.1) and the second is an equation for the absence of vorticity in the flow: 

rMooqatt2 + 2rM~cpxt = (r(Cl+C2~=)~pz)~ + (r~r)'r, Ur -- V= = 0. 

Multiplying the first equation by u and the second by rv and adding them together, we obtain a relation in 
divergent form: 

~,2 2 3 ~2 ~ ,  , 
r M 2 ( ~  2 + ~ , ~ t ) ~ = r  C,y+~C2u - T + M  2 - ~ 1  +(ruv),. (2.3) 

Let us integrate relation (2.3) over the calculation domain fi (Fig. la) with compression shocks excluded. 
Applying Green's formula to the right-hand side of this relation, we have 

+ ' = j ( r  c, T 5 T M2(~o2 z ~=~vt)tdzdr + C2u 3 -  + M  2 dr- f r~,,dx (2.4) 
fl L L 

where L is the contour of the domain ~. When the boundaries of the calculation domain tend to infinity, the 
right-hand side of (2.4) can be written as 

-~ + Moo dr - - (2.5) 
sh  sh  w 

where the subscripts sh and w denote integration along compression shocks and along the body, respectively, 
and the brackets denote the difference in the enclosed quantity in passage through a shock from left to right. 

Let us transform the left-hand side of relation (2.4). For this, it is necessary to take into account the 
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internal compression shocks moving in the domain ft. To this end, we select domains with discontinuities 
and divide them into two subdomains: fh  and f12 (Fig. lb). According to the calculation rules for multiple 
integrals and Leibnitz's formula for differentiation of parameter-dependent integrals, the left-hand side It of 
(2.4) for the domain fix has the form 

d r r  2 ~ r ~ ~ (~ dr-dr dA It= 
il  1 sh 

A similar expression is obtained for the integral over the domain f~2. Combining them, we find a relation for 
the entire domain ~: 

I I  f l  

In the derivation of (2.6), it was taken into account 
its movement is determined by the relation 

dxdr frM~ ~ dx _ 

dt sh /" sh 
(2.6) 

that a shock can be curvifinear (Fig. lb). The velocity of 

= - -  COS ~ .  
sit sh  

Substituting (2.5) and (2.6) into (2.4) and taking into account the condition of zero normal velocity on the 
body v = /~z ,  we can express the integral over the body in terms of integrals over the shock and a multiple 
integral over the calculation domain: 

f R~,,,.,~ = f, .  c, + c~,,~- + , <  , , , .  r[uv]dx 
- 0 . 5  sh sh 

- dt ,h  / --~ 
sh 12 

To simplify (2.7), we use the conditions on the shock: 

- - -  dr + 29x] M~ [Clu + C2u 2] dr + [v] dz; (2.8) 
dx dr 
dt sh -d-[ sh dx) [qvt + = 

[u] dx + iv] dr = O. (2.9) 

Multiplying (2.9) by the arithmetic mean of the vertical velocity component over the shock (v), we have 

(v)tu ] dx + [v~ 2 ] dr = 0. (2.10) 

Substituting (2.10) into (2.7), we obtain 

/ + 

--0.5 sh sh 

f + 

sh f l  

We transform the expression (v)[u I -[uv] = -(u)tv].  Let us multiply (2.8) by (u): 

-r[v](u)dz = _(dx\ dt shdr + drdt shdZ~/rM 2 [~t + 2~1  (u) - r [C lu  + C2 u2] (u)dr. 

Substituting this relation into (2.11) and taking into account that  

2 [ ~ 1  _ [~21 (,.,) = t~] ~ 
6 ' ( ' )  [~ ' ]  - [,-,~,t = - [ , , l  @, ) ,  

we find 
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/ / 
-0.5 .sh sh 

[(  s d 2 dr + dxlrM~tu](~t)--~ H rMoo(~-t-~zqoz)dxdr. (2.12) 
sh fl 

Using (2.12) and (2.2), we obtain a final expression for the drag: 

/ / c ~ = 4 r 3 ' + 1  2 [qo~] 3 d r - 4 1 r M  L r dr 4rM 2 ~ ' s h  12 M~176 r - r <qot}[u] dr 
sh sh sh 

0.5 R 0.5 d 
+ 4 a ' M ~  ~-~//r(~,~ +r f (~,)tRR~xdx (S~=)2 In (2.13) 

27r r .  -0.5" 
fl -0.5 

It is not necessary to transform the double integral in (2.4). Then the formula for the wave drag has the form 

47r 7 + 1  

sh sh 

o.s R 10.5 
2 I - - -    ),dxdr-4  f RR'dx (S'12ln-- (2.14) 

2r r ,  I-o.5" 
fl -0.5 

It is assumed in these formulas that  the position of the shock is nearly vertical, and the corresponding terms 
with dr/dr are omitted.  Moreover, it was assumed in the derivation of the formulas that  at infinity the velocity 
perturbations tend to zero. It should also be noted that  in the case of steady axisymmetric flow, formulas 
(2.13) and (2.14) become the formula obtained in [3]; the first and the last terms remain. 

3. N u m e r i c a l  M e t h o d  a n d  C a l c u l a t i o n  R e s u l t s .  The boundary-value problem formulated for 
Eq. (1.1) was solved numerically using an axisymmetric variant of the alternating-direction method developed 
in [3] and the Engquist-Osher monotone scheme [10]. Numerical calculations were carried out on a rectangular 
grid consisting of 121 nodes in the x direction and 81 nodes in the r direction. The grid was refined near the 
leading and trailing edges and became coarser with distance from the body. The boundaries of the calculation 
domain were at a distance of 30 chords from the coordinate origin in both directions. Eighty-one nodes of the 
calculation grid were specified on the body, which was located symmetrically about the r axis (Izl ~< 0.5). 

To calculate the drag by the method of integration along shock waves, we developed an algorithm for 
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their detection in each time step by abrupt decrease in the local Ma~h number in the flow field. If the velocity 
perturbations at infinity were different from zero, according to the conditions of the problem, for example, 
in the case of a weak plane shock wave moving with a constant nonzero perturbed velocity behind it in the 
half-space, this was taken into account by subtracting the corresponding constant, which was calculated for 
a finite domain of numerical integration, from the drag obtained by formula (2.13) or (2.14). 

Let us present the results of numerical calculation of the unsteady wave drag for bodies of revolution of 
two types. The first type is a body formed by revolution of an arc of a circle that has 14% thickness. Let this 
body move at a transonic speed and enter abruptly a horizontal oncoming gust (instantaneous enveloping). 
In this case, the Mach number varies from M1 = 0.93 to M2 = 0.98. Figure 2 shows the time dependence of 
the unsteady drag, which varies from an essentially zero value to a value that corresponds to Moo = 0.98. 
Curve 1 is a drag calculation by integrating along shock waves. Here the results obtained from formulas (2.13) 
and (2.14) essentially coincide. Curve 2 represents a drag calculation using the usual method of integrating 
the pressure distribution over the surface of the body. The small difference (within 5%) observed in these two 
methods is caused by the fact that the body is fairly smooth and satisfies almost all assumptions of the theory 
of small perturbations. The local errors of the numerical calculation in the areas of the front and back points 
of the body are not large. A numerical calculation for the same body was performed for another problem: a 
plane shock wave with speed difference Au = 0.1 approaches from behind a body moving at a transonic speed 
Moo = 0.98. 

Figure 3 shows the time dependence of the unsteady drag as the shock wave passes over the body. 
Curve 1 corresponds to the calculation by integrating over shock waves, and curve 2 represents integration 
of the pressure distribution over the body. The difference between the curves is not large, as in the first case. 
It should be noted that the curves in Fig. 3 have a clearly nonmonotone character, and the drag value at 
some times even becomes negative. This is caused by the fact that the shock wave approaches from behind, 
"pushing" the body. Note the slowness of the transition process (as in the first case), which is typical of the 
transonic speed range. Note also that the calculations using formulas (2.13) and (2.14) again give very similar 
results (within 2-3%), and, therefore, we can conclude that they are equivalent from the point of view of 
numerical calculation of drag by the method of integrating over compression shocks. 

Let us now consider the same two problems of unsteady flow around a slender body of revolution 
having another shape that permits local violations of the assumption in the theory of small perturbations 
that the derivative R"~ is small. The body consisted of three parts: a nose, which was close to an ellipsoid of 
revolution; a central part, which was a cylinder; and a spindle-shaped rear part. The rear part occupied half 
the length and the nose part occupied 30% the entire length. The nose part and central parts were smoothly 
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joined, as were the central part and the rear part, i.e., the derivative/~z was continuous at these points. Flow 
around bodies of this type has been studied experimentally in sufficient detail by Petrov [11], who described 
the geometrical shape of such bodies and reported data on their wave drag. In [3], calculations of steady 
transonic flow around three bodies of this class were carried out, and numerical and experimental results of 
the wave drag were compared. The reliability of the method of drag calculation by integrating along shock 
waves in comparison with integration of the pressure distribution over the surface of the body is shown. 

Figure 4 shows the time variation of the wave drag of the body considered for an abrupt horizontal 
gust (instantaneous enveloping). The initial Mach number is M1 = 0.93, and after enveloping by the gust, 
M2 = 0.98. Curve 1 illustrates the calculation by integrating along shock waves, and curve 2 represents 
integration of the pressure over the body. In this case (as for the steady flow regime), the difference between 
the curves is inadmissibly large; curve 2 does not even reach positive values of drag. At the same time, 
calculation curve 1 gives a result that is close to the experimental result after completion of the transition 
process. On the whole, the unsteady curve, unlike'the curve for the first body, is nonmonotonic. 

Figure 5 illustrates the time variation of the wave drag of the body considered when it is subject to 
the influence of a weak shock wave approaching it from behind. Curve 1 shows the calculation by integrating 
along compression shocks. It is nonmonotonic and has intervals of negative values (the wave pushes the body 
from behind) and reaches a zero value, which indicates the establishment of a new subcritical flow regime 
after the shock wave leaves the body and goes upstream. Curve 2 represents the result of calculation of drag 
by integration of the pressure distribution over the surface of the body. It is seen that this method gives 
negative values of the wave drag (thrust) both prior to the beginning of the interaction process and after its 
completion, and this suggests that the entire curve 2 is unreliable from a physical point of view. 
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